

Tage der Vertrauenswürdigen Elektronik 2025, Essen, 29. Oktober 2025

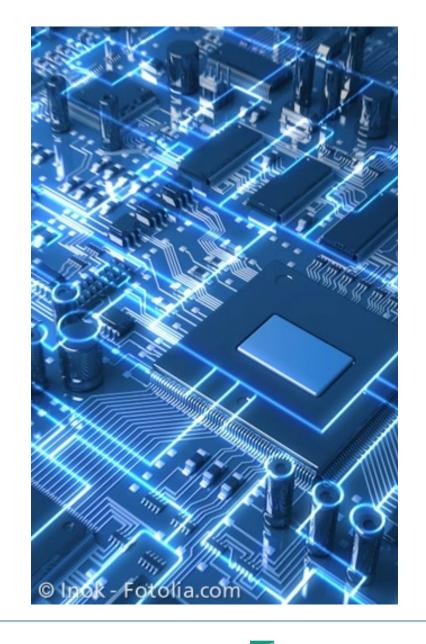
DI-Flowspace: Open-Source-Design-Kit für strahlungsharte Mikroelektronik in der Raumfahrt und Medizintechnik

Roland Jancke, Fraunhofer Institut für Integrierte Schaltungen IIS Norbert Herfurth, Leibniz-Institut für innovative Mikroelektronik IHP

Open-Source Design Kit for Radiation Hardened ICs Objective

Why do we care about Design Kits?

Process Design Kits connect technology development with design capability


PDKs contain available devices, their characteristics and limitations

Designers utilize PDKs to **develop circuits** in the respective technology

Foundries **protect their technology IP** by restricting PDK access

This **prevents** Academia and SMEs from **using innovative technologies**

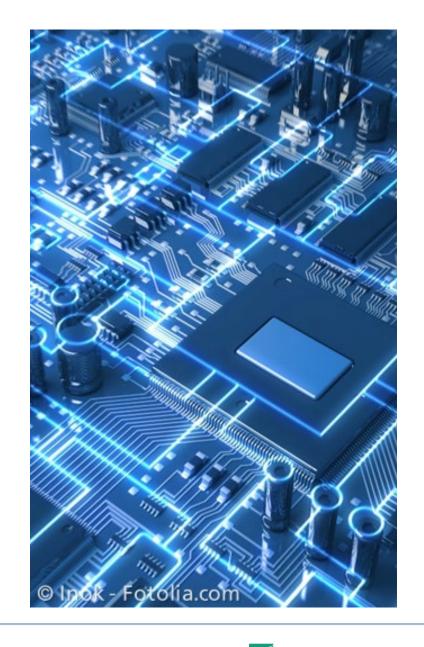
► Open-Source Design Kits help leveraging innovative technologies for use in research and education

© Fraunhofer IIS

Open-Source Design Kit for Radiation Hardened ICs Objective

What do we aim for in the project?

Designers **need additional support** enabling them to utilize the technology


Specific radiation hardened devices and standard cells will be provided

Open-source tools are required that allow going through the **entire design process**

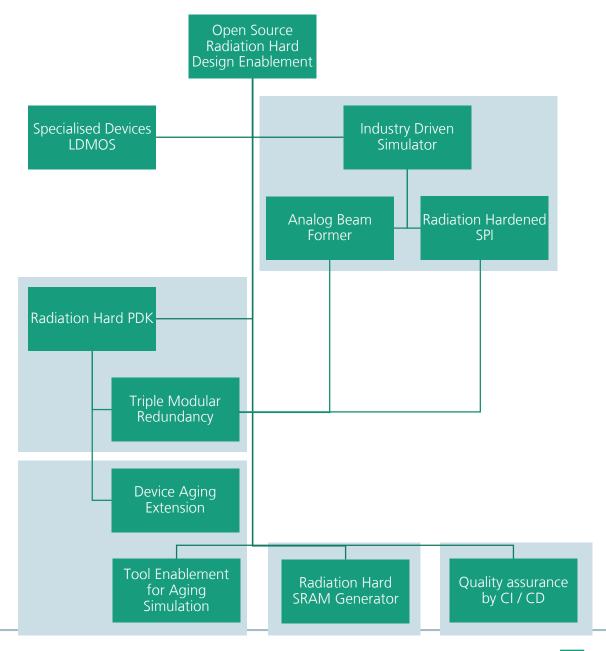
Add-on tools, i.e. for SRAM generation, **improve usability** of the design kit

Design quality will be ensured by additional CI/CD tools in the design flow

Additional Open-Source tooling will improve design capabilities and reduce risk of geopolitical dependencies

Overview

Core Innovations


Open-Source European Radiation Hard PDK

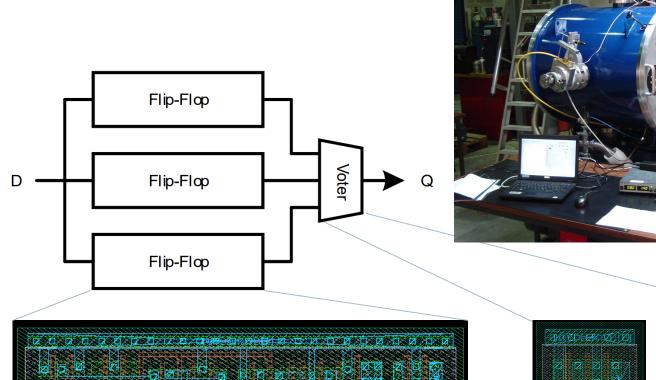
Extended Radiation Hard **SRAM Generator**

Quality-Assured Development Flow by **CI/CD**

Added **Open-Source Simulator** Capabilities

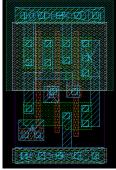
Space-ready **analog beam former** with SPI

05/11/2025

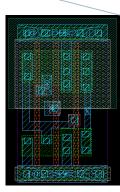

Radiation Hardened PDK

Triple Modular Redundancy Cells

- Prevention of radiation induced Bit Flips
- IHP-Open130-G2 has limited # of cells
- Several TMR cells designed
 - Flip-Flop
 - Voter
 - Delay
 - SRAM blocks
- Test Chip Taped out April 2025
- Github release in Summer 2025
- Radiation tests being prepared


Aging Module

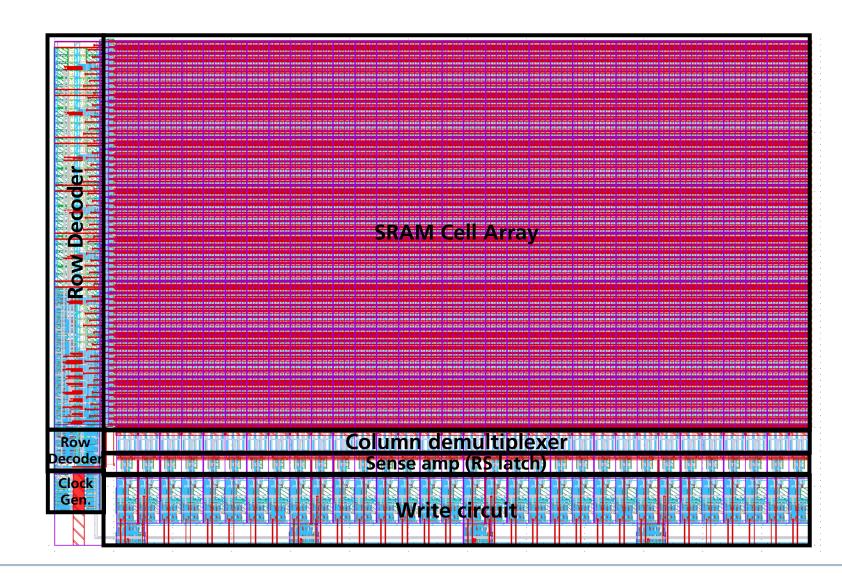
- First version under internal revision.
- Github release in June



AND gate

OR gate

SRAM Generator


First single test structures

- Circuit and layout generation done
- Simulation based design optimization
- Single cells taped out in November

Next steps

- Design of larger arrays
- Analysis regarding timing
- Power analysis
- Functional test chip
- Radiation hardening
- Github release in the next weeks

Partnering with Chipflow

Public

CI/CD System

Integrity check of Design environment

- Tools
- PDK
- Golden Designs
- Available Open Source (can be hosted individually)
- Internal test on infrastructure started Q2/25

Docker

- focus on analog design
- development of own docker

Partnering with SymbioticEDA

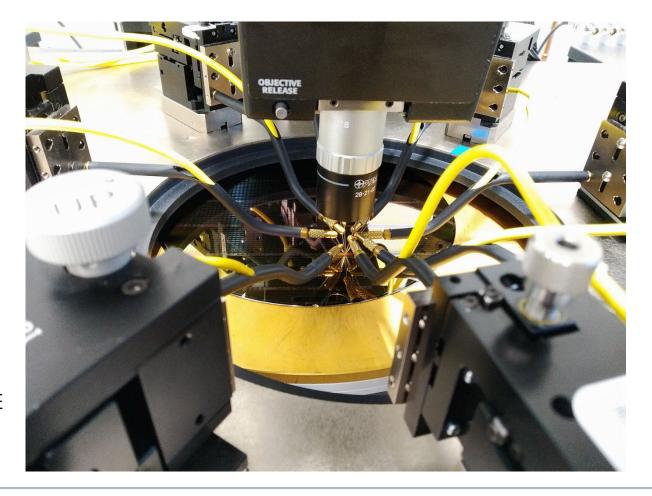
Public

Open-Source Simulator Capabilities

Degradation measurements (aging mechanisms)

- Hot Carrier Injection (HCI)
- Negative Bias Temperature Instability (NBTI)

Creation of degradation models (aging)


- Extension of existing models for HCI
- Development of models for NBTI

Approaches for modeling the effects of radiation

- Total lonizing Dose (TID)
- Single Event Upset (SEU)

Integration into the simulator ngspice

Cooperation of Fraunhofer IIS with ngspice team from UDE

Public

Open-Source Design Kit for Radiation Hardened ICs

Facts and Figures

Summary

Access to radiation hardened chip design and its handling

- Improved accessibility and ease of use for individuals, education and SMEs
- Understanding and application of radiation hardened technologies by open resources and tools

Strengthening the open-source community in chip design

- Advancement of an active open-source in analog, radiation hardened chip design
- Promotion of contributions and collaborative development by providing an integrated open tool flow

Partners

Academia

- IHP Leibniz Institute for High **Performance Microelectronics**
- Fraunhofer Institute Integrated Circuits IIS

Public

University Duisburg-Essen

Industry

IMST GmbH

Associated

- SymbioticEDA
- Chipflow

Funding

2.443.110 €

GEFÖRDERT VOM

Kontakt

Dr. Roland Jancke
Abteilungsleiter Entwurfsmethoden
Tel. +49 351 45691-200
roland.jancke@iis.fraunhofer.de

Fraunhofer-Institut für Integrierte Schaltungen IIS Institutsteil Entwicklung Adaptiver Systeme Münchner Straße 16 01187 Dresden www.eas.iis.fraunhofer.de Dr. Norbert Herfurth
Group Leader
Technology / Diagnostic, Sensory & Emerging Modules
Tel. +49 (335) 5625-525
herfurth@ihp-microelectronics.com

IHP GmbH
Leibniz-Institut für innovative Mikroelektronik
Im Technologiepark 25
15236 Frankfurt (Oder)
www.ihp-microelectronics.com

Vielen Dank für Ihre Aufmerksamkeit